Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Shujiang Tu,* Tuanjie Li and Fang Fang

Department of Chemistry, Xuzhou Normal University, Xuzhou 221116, People's Republic of China

Correspondence e-mail: laotu2001@263.net

Key indicators

Single-crystal X-ray study
$T=193 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.074$
$w R$ factor $=0.145$
Data-to-parameter ratio $=16.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

4-(1H-Indol-3-yl)-2,6-bis(4-methoxyphenyl)pyridine

The title compound, $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}$, was synthesized by the reaction of indole-3-carbaldehyde with 4-methoxyacetophenone and ammonium acetate in glycol under microwave irradiation. X-ray analysis reveals that $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds link the molecules into zigzag chains along [011].

Comment

2,4,6-Trisubstituted pyridines are important because of their biological activity (Shirai et al., 1993) and optical (fluorescence and scintillation) properties (Knyazhanskii et al., 1996; Kurfurst et al., 1989) and their quaternary salts have synthetic applications (Katritzky, 1980; Katritzky \& Marson, 1984). We report here the crystal structure of the title compound, (I).

The asymmetric unit contains two molecules (Fig. 1). The corresponding bond distances and angles agree with each other. In one molecule, the two methoxyphenyl rings form dihedral angles of 43.81 (5) and 42.22 (8) ${ }^{\circ}$ with the pyridine ring [40.54 (5) and $43.78(7)^{\circ}$ in the other molecule] and the dihedral angle between the indole and pyridine rings is

Figure 1
The asymmetric unit of (I), showing 40% probability displacement ellipsoids and the atom-numbering scheme. H atoms have been omitted.

Received 11 November 2004
Accepted 22 November 2004 Online 27 November 2004

Figure 2
Molecular packing of (I), viewed along the a axis. Dashed lines indicate hydrogen bonds.
$33.58(7)^{\circ}$ [34.30 (6) ${ }^{\circ}$ in the other molecule]. In the crystal structure, intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (Table 2) link the molecules into chains along [011] (Fig. 2).

Experimental

Compound (I) was prepared by the reaction of indole-3-carbaldehyde (2 mmol) with 4 -methoxyacetophenone (4 mmol) and ammonium acetate (2 mmol) in glycol (2 ml) under microwave irradiation (yield 73%; m.p. $505-506 \mathrm{~K}$). Single crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution.

Crystal data

$\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=406.47$
Triclinic, $P \overline{1}$
$a=8.7438(13) \AA$
$b=16.341(2) \AA$
$c=16.460(2) \AA$
$\alpha=68.442(11)^{\circ}$
$\beta=76.059(12)^{\circ}$
$\gamma=75.827(12)^{\circ}$
$V=2090.7(5) \AA^{3}$

Data collection

Rigaku Mercury diffractometer ω scans
Absorption correction: multi-scan

(Jacobson, 1998)

$T_{\text {min }}=0.959, T_{\text {max }}=0.984$
23621 measured reflections
9420 independent reflections

$Z=4$

$D_{x}=1.291 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 7351 reflections
$\theta=3.1-27.5^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=193$ (2) K
Block, orange
$0.51 \times 0.42 \times 0.20 \mathrm{~mm}$

7619 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.040$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-11 \rightarrow 11$
$k=-21 \rightarrow 21$
$l=-20 \rightarrow 21$

Refinement

Refinement on F^{2}

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.074$
$w R\left(F^{2}\right)=0.145$
$S=1.16$
9420 reflections
571 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0393 P)^{2}\right. \\
+1.3567] \\
\text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.25 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.21 \mathrm{e} \AA^{-3}
\end{gathered}
$$

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

N1-C1	$1.350(3)$	C4-C5	$1.391(3)$
N1-C5	$1.352(3)$	C5-C20	$1.484(3)$
N3-C28	$1.349(3)$	C28-C29	$1.390(3)$
N3-C32	$1.353(3)$	C28-C33	$1.488(3)$
C1-C2	$1.391(3)$	C29-C30	$1.395(3)$
C1-C6	$1.486(3)$	C30-C31	$1.393(3)$
C2-C3	$1.390(3)$	C30-C39	$1.466(3)$
C3-C4	$1.396(3)$	C31-C32	$1.389(3)$
C3-C12	$1.464(3)$	C32-C47	$1.481(3)$
C1-N1-C5	$117.33(17)$	N1-C5-C4	$122.70(19)$
C28-N3-C32	$117.43(17)$	N3-C28-C29	$122.48(19)$
N1-C1-C2	$122.44(18)$	C28-C29-C30	$120.55(19)$
C3-C2-C1	$120.75(19)$	C31-C30-C29	$116.47(18)$
C2-C3-C4	$116.44(18)$	C32-C31-C30	$120.43(19)$
C5-C4-C3	$120.31(19)$	N3-C32-C31	$122.60(18)$

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 4-\mathrm{H} 28 \cdots \mathrm{~N} 1^{\mathrm{i}}$	$0.91(3)$	$2.12(3)$	$3.001(3)$	$163(2)$
$\mathrm{N} 2-\mathrm{H} 1 \cdots \mathrm{~N} 3^{\text {ii }}$	$0.94(3)$	$2.10(3)$	$3.018(2)$	$165(3)$

Symmetry codes: (i) $x, y-1, z$; (ii) $x, y, 1+z$.
Amine H atoms were located in a difference Fourier map and were refined isotropically $[\mathrm{N}-\mathrm{H}=0.91$ (3) and 0.94 (3) \AA]. All other H atoms were placed in geometrically idealized positions and allowed to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.95-$ $0.98 \AA$, and $U_{\text {iso }}(\mathrm{H})=1.2$ or 1.5 times $U_{\text {eq }}(\mathrm{C})$.

Data collection: CrystalClear (Rigaku, 1999); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 20002003); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

We thank the Natural Science Foundation of China (No. 20372057) and the Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province (No. 01AXL 14) for financial support.

References

Jacobson, R. (1998). Private communication to the Rigaku Corporation. Katritzky, A. R. (1980). Tetrahedron, 36, 679-699.
Katritzky, A. R. \& Marson, C. M. (1984). Angew. Chem. Int. Ed. Engl. 23, 420429.

Knyazhanskii, M. I., Makarova, N. I., Olekhnovich, E. P., Pichko, V. A. \& Kharlanov, V. A. (1996). Zh. Org. Khim. 32, 1097-1103.

organic papers

Kurfurst, A., Lhotak, P., Petru, M. \& Kuthan, J. (1989). Collect. Czech. Chem. Commun. 54, 462-472.
Rigaku (1999). CrystalClear. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2000-2003). CrystalStructure. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.

Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Shirai, H., Hanabusa, K., Takahashi, Y., Mizobe, F. \& Hanada, K. (1993). Japan Patent 93126541.

